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Abstract

The aim of this work is to implement an algorithm that automatically locates,
extracts and classi�es isolated drum sounds from music recordings. The use of
drum sounds taken from external music recordings is a wide spread technique in
modern popular music, also called sampling. For musicians locating and slicing
these relatively short sound snippets can be very time consuming, especially when
working with big music collections. Therefore, such a system could help musicians
by making it easier to create drum libraries from their personal music collections.

The procedure to establish the considered algorithm can roughly be divided
into four stages. In the �rst stage potential sections in the waveform are selected
using crest factor and root mean square and in the second stage beat tracking
is used to segment the sections into individual sounds. Subsequently the sounds
are classi�ed into the categories non percussive/harmonic, kick drum, snare and
hi-hat. For the classi�cation step a set of temporal and spectral features are
calculated and reduced in dimensionality by using linear disciminant analysis. For
the actual classi�cation maximum likelihood method is used. Labeled training data
was gathered from several drum libraries and breakbeat compilations. An overall
classi�cation rate of 89% was achieved, which may be further improved by using
more training data.
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1 Introduction: Sampling in Music

In the context of music production the term sampling refers to the act of taking a piece
from a music recording to create instruments or sound e�ects for the purpose of reusing
it in a di�erent piece of music. Although this technique was already used by experimental
musicians in the 1940's it became very popular among hip hop artists in the late 1970's
and 1980's [Ess]. At the early stages of hip hop it was common to use loops from funk,
soul or disco music spanning one or multiple bars to give rappers or b-boys a backing
track for their performance. After a while the musicians started to record single drum
sounds from popular break beats into their samplers to create their own drum kits and
rhythm tracks. To this day this practise is very common among artists in popular and
especially electronic music.
While there exist many sample libraries compiling drum sounds from the most popular
break beats it is still part of many musician's work to search for recordings containing
isolated drum sounds and to create their personal sound collections by cutting them out
and combining them to new sounds. In the early stages of sampling, meaning the 1990's
and early 2000's, the samples were cut almost exclusively from vinyl records since they
were more a�ordable than CD's and a lot of the source material was not very popular
and therefore simply not available on digital media. Although many musicians nowadays
claim to still use vinyl records, may it be due to tradition or aesthetical reasons, It is
obvious that digital recordings are widely used for sampling, simply because of their
availabilty from the world wide web.
While the use of physical recordings forces the musicians to listen through the whole
piece to �nd the sounds they are looking for, the advantage of digital music is that music
information retrieval algorithms can be used to speed up the process of �nding samples
or even to completely undertake it.
The goal of this work is to take a �rst step into this direction and to implement an
algorithm that automatically locates, extracts and classi�es isolated drum sounds from
music recordings.
Perfecto Herrera et. al examined di�erent techniques for the classi�cation of drum
sounds achieving high hit-rates up to 97% [HYYG02]. While there are multiple works
on the extraction of drum sounds from polyphonic music recordings, which could be
considered a source seperation task [ZPDG02], the author is not aware of any work
addressing the problem of locating isolated drum sounds in music recordings.

Structure of this work Chapter 2 discusses the established method including a de-
scriptions of the Pre-Selection 2.2 and Segmentation step 2.3 as well as an overview of
the used features 2.4, the dataset 2.5 and �nally the classi�cation method 2.6.
In section 3 the results are presented and discussed and section 4 presents the conclusion
of this work.
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2 Method

2.1 Overview

Figure 1 shows an overview of the algorithm, which can be roughly divided into four
stages. The aim of the �rst stage is to select parts from the input signal that have
a high potential to be percussive sounds. This is done by using low-level-features and
thresholding. In the second step, these parts are segmented into single hits using an onset
detection algorithm. Subsequently a feature vector is calculated for each of the segments
and a classi�er is used to identify drum sounds and divide them into the categories kick,
snare and hi-hat.

Input Signal

Pre-Selection

Segmentation

Feature-Extraction

Classi�cation Mixture

KickdrumSnare Hi-Hat

Figure 1 � Overview of the system
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2.2 Pre-Selection

The principal goal of this step is to �nd sections within the waveform, that have a high
potential to exhibit isolated drums to reduce computation time. Since feature extraction
for a typical input signal of about 3 minutes length would take a high computational
e�ort, relevant segments are segregated from the input signal beforehand by using a
binary mask. Figure 2 roughly describes the process of calculating the binary mask.
The pre-selection is based on root mean square and crest factor of the signal. Assuming

Input Signal

Tempo Estimation

crest factor rms

histogram histogram

thresholding thresholding

averaging

selection mask

Figure 2 � Outline of the pre-selection step

four beats per bar, the length of the analysis windows are chosen so that they span one
bar for the crest factor and half a bar for the root mean square while the hop-size is �xed
at a length of 100 ms. For tempo estimation a beat tracking algorithm by Dan Ellis is
used [Ell07]. Crest factor and rms are then binarized by separate threshold values. To
determine the threshold values the histograms of crest factor and rms are calculated.
For the crest factor the threshold is de�ned by steepest descent in the upper half of the
histogram. Similarly the threshold for the rms is derived from the slope in the lower
third of the histogram (�gure 3).
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Figure 3 � Thresholds for crest factor and rms
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The crest factor is binarized by setting every value smaller than the threshold tc to zero.

Bc =

{
0, if xc < tc

1, otherwise
(1)

Analogously every value of the rms higher than the threshhold tr is set to zero.

Br =

{
1, if xr < tr

0, otherwise
(2)

Finally the binarized functions of rms and crest factor are added together and averaged
by a time window of 5 frames.

Figure 4 � Calculation of the selection mask. Crest factor before and after threshold-
ing (top), RMS before and after thresholding (middle) and combined selection mask
(bottom).
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2.3 Segmentation

The previously determined parts are now cut into single segments, ideally consisting
of single sounds. Therefore an onset detection is performed and the signal is cut at
the found onsets. To ensure a clean cut and to avoid any clicks at the beginning the
start times are moved to their nearest zero crossings. For the implementation of the
onset detection an extended version of the spectral �ux log �ltered by Böck et. al is
used here [BKS]. On this detection function simple peak picking with a minimum peak
distance of a demisemiquaver is applied to estimate the relevant onsets.

2.4 Features

The selection of the features is partly based on the work of Perfecto Herrera et al.
[HYYG02]. In general the features can be divided into two groups namely temporal and
spectral features.

2.4.1 Pre-processing

Signal Envelope The signal envelope is obtained by using a N-tap Hilbert �lter,
where N is chosen to represent a time window of 100 ms (MATLAB: envelope(x, N).
Subsequently the result is lowpass �ltered by a 6-th order butterworth �lter with a cut-o�
frequency at 100 Hz.

Attack Time Estimation For some features it is distinguished between the attack
and the decay phase of the signal and therefore the attack time is estimated as a
�rst step. For the actual implementation, the weakest e�ort method, as proposed by
Peeters [Pee04], is used.
Then as depicted in �gure 6, ten equally spaced threshold values Θi are de�ned from
the global maximum of the envelope. The time ti where the envelope �rst reaches the
corresponding threshold Θi is then used to de�ne the "e�ort" as the interval between
successive time instances ωi = ti+1 − ti. Then the average value ω̄ over the e�orts is
calculated and the threshold thst of the starting time of the attack phase is de�ned as
the �rst threshold where the e�ort goes below K ∗ ω̄. Similarly the last threshold for
which the e�ort goes below K ∗ ω̄ is taken as the end of the attack phase thend. For
the constant K a value of 3 is used for the implementation. The start time tst and end
time tend are then set to the local maxima around the corresponding thresholds thst and
thend.
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Figure 5 � Signal x(t) (blue) and its envelope ex(t) (red) for three di�erent exemplary
sounds. Kick drum (top), snare (middle) and hi-hat (bottom).
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Figure 6 � Weakest e�ort method for attack time estimation according to Peeters
[Pee04]. Start time (tst) and end time (tend) of the attack phase are indicated by
the dashed line.
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Framing For the spectral representation (see below), as well as for the calculation of
the zero-crossing rate, the signal is divided into frames of 60ms length with an overlap
of 50%. Since this work focusses on drum sounds, where low frequencies usually play
a bigger role than in other applications, i.e. speech processing, a better resolution of
those frequencies and therefore a larger window is needed. Additionally each frame is
multiplied by a hamming window to reduce windowing e�ects.

Spectral Representation On each of the frames a �t of length N = 4096 is per-
formed. For the decay spectrum only the frames containing the decay phase of the input
signal are used.

2.4.2 Temporal Features

Temporal Centroid The temporal centroid can be used to describe how transient a
sound is. If the sound is percussive the temporal centroid will be close to the end of the
attack phase (tst) and if the sound has a longer sustain it will be located more to the
center of the decay phase. For the calculation of this feature the envelope ex(t) of the
signal is used.

tc =

∑
t t · ex(t)∑
t ex(t)

(3)

Figure 7 shows the distribution of the temporal centroid among the di�erent classes. It

Figure 7 � Distribution of the temporal centroid, normalized to the length of the individual
signal. The probability is estimated by a histogram of the training data.

can be observed that for the kick drum sounds the centroid lies at the beginning of the
frame whereas more stationary sounds especially the mixtures have a temporal centroid
which is more shifted to the right.
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Attack Zero Crossing Rate The zero corssing rate is the number of times the
waveform of the signal changes its sign relative to the length of the signal. The attack
zero-crossing rate is computed as a single value over the attack phase of the signal. As
can be seen in �gure 8 the attack zero-crossing-rate is close to zero for sounds from the
categories snare, kick and mixture and is relatively high for hi-hat sounds which are more
noise-like than sounds from the other categories.

Figure 8 � Distrubtion of the attack zero-crossing rate. The value is normalized to the
length of the signal.

2.4.3 Spectral Features

Decay Spectral Flatness The decay spectral �atness is de�ned by the ratio of the
goemetrical mean of the spectrum to its mean value. For tonal signals the spectral
�atness measure is close to 0, whereas for noisy signals (�at spectrum) it is expected to
be close to 1.

dsfm =

(∏N
n=1 |Sd(n)|

) 1
N

1
N

∑N
n=1 |Sd(n)|

(4)

It is computed individually for each of the frames and the mean and variance over all
frames are taken as the �nal feature representation. Figure 9 shows the distribution of
the mean and variance of the spectral �atness measure over the decay spectrum. As
expected the mean values for hi-hat sounds is higher than for the other sounds since
it has the most "noisy" spectrum. While the mixture sounds are expected to have the
most peaky or tonal spectrum and therefore show values for the spectral �atness which
are close to zero the distribution of SFM values for snare and mixture sounds show a
high similarity.
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Figure 9 � Distrubtion of the decay spectral �atness measure.

Decay Spectral Centroid The decay spectral centroid is the centroid of the decay
spectrum. It is computed for each frame individually and the mean over all frames is
taken as the �nal feature representation. Figure 10 shows the distribution of the decay
spectral centroid over the whole dataset. As expected for hi-hat sounds the spectral
centroid is concentrated more to the higher frequencies than for snare and kick drum
sounds. This can also be observed in �gure 11, which shows the spectral centroid for
typical snare, kick and hi-hat sounds.

dsc =

∑N
n=1 f · |Sd(n)|∑

t |Sd(n)|
(5)

Decay Spectral Kurtosis The kurtosis of the decay spectrum is a descriptor of the
shape of the spectrum. It can be interpreted as a measure for how peaked a distribution
is. A high kurtosis value usually means that the distribution is more pointed, a low value
on the other hand means that the distribution is more �at.

Kurt(Sd) =
E[(|Sd(n)| − µ)4]

E[(|Sd(n)| − µ)2]2
(6)

Where µ denotes the mean value of the amplitude spectrum of the decay phase. The
kick drum sounds are expected to have a higher spectral kurtosis than hi-hat or snare
sounds since the spectrum is less �at (see �gure 12).
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Figure 10 � Distrubtion of the decay spectral centroid (normalized frequency)

Figure 11 � Spectral Centroid of typical snare (top), kick (middle) and hi-hat (bottom)
sounds.

Decay Spectral Skewness The spectral skewness is a measure for the asymmetry
of the spectrum. If the skewness is negative the mass of the distribution is more con-
centrated to the right side. If the value is positive the right tail is longer and the mass
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Figure 12 � Distrubtion of the decay spectral kurtosis

is concentrated to the left side of the spectrum.

Skew(Sd) =
E[(|Sd(n)| − µ)3]

E[(|Sd(n)| − µ)2]3/2
(7)

When looking at the distribution of the decay spectral skewness, two di�erent peaks for
the kick drum class can be observed. This may be explained by the fact that some of
the sounds are essentially overlayed by hi-hat or cymbal sounds.

Figure 13 � Distrubtion of the decay spectral skewness
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Spectral Roll-O� The spectral roll-o� is the frequency point at which the spectrum
has reached 85% of its overall power distribution. For this feature the logarithmic
spectrum SLogk scaled to positive values is used. Here the entire spectrum, including
attack and decay phase, is used.

SLogk = 20 log(Sk)−min(20 log(Sk)) (8)

Again the mean over all frames k is used as the �nal value. Figure 14 shows the
distribution over the whole dataset.

Figure 14 � Distrubtion of the spectral roll-o�

MFCC's Mel Frequency Cepstral Coe�cients are spectral descriptors widely used in
speech processing [RJ93]. In this work MFCC's up to the 13th coe�cient are calculated
for each frame with the �rst coe�cient being discarded. The means and variances
over each bin are taken as descriptors, making it a total of 24 MFCC values. For
the actual implementation, the code provided by Dan Ellis (Columbia University) is
used [Ell05].Figure 15 shows the means of the MFCC's averaged over each of the classes
in the dataset.

Bark Spectrum To represent the spectral energy distribution in a way that approxi-
mates the human hearing the bins of the spectrum are grouped into 20 bark bins. This
is done by multiplying the power spectrum P by a weighting matrix Wb. The power
spectrum P is obtained by taking the average of the spectrogram S over time.

B = 20 · log10 (Wb · |P |) (9)

Figure 16 shows an example of the weighting function, below 500 Hz the bark scale is
linear with equal distances and above 500 Hz it is similar to a logarithmic axis. For the
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Figure 15 � MFCC's averaged over each of the classes

Figure 16 � Plot of the bark scale weighting matrix. Rows are shown as individual
funtions.

generation of the weighting matrix we use again Dan Ellis' Rastamat toolbox [Ell05].
Figure 17 shows the bark spectra for each of the four classes averaged over the whole
dataset.
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Figure 17 � Bark Band Energy averaged over each of the classes
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2.5 Dataset

The dataset consists of 2698 samples. 949 of these samples are isolated drums sounds
and are taken from comercial sample libraries. The other part consists of hand labeled
segments from the Ultimate Breaks & Beats compilations and contains all of the four
classes. The exact distribution if shown in table 1.

Class Snare Kickdrum Hi-Hat Mixture
Samples 386 309 254 0
UB&B 100 163 17 1485
Overall 486 472 271 1485

Table 1 � Dataset used for training of the classi�er.

2.6 Classi�cation

2.6.1 Feature scaling

Before any further analysis takes place the features of the dataset are standardized. This
is done by calculating the standard score for each of the features x

x′ =
x− µ
σ

(10)

where µ and σ denote the mean and standard deviation of the feature.

2.6.2 Linear Discriminant Analysis

To reduce the number of dimensions in the feature space Linear Disciminant Analysis
(LDA) is used. Assuming gaussian normal distribution of the data LDA tries to maximize
class seperability by analyzing the ratio of the so called between-class matrix Sb and the
within-class matrix Sw. For K di�erent classes and nk being the number of samples in
this class the scatter matrices can be de�ned as:

Sb =
K∑
k=1

nk

n
Σk (11)

Sw =
K∑
k=1

nk

n
(µk − µ)(µk − µ)T (12)

Where µ denotes the overall mean and Σk and µk the covariance and mean of the class
k. Eigenanalysis is then performed on the ratio Sb

Sw
resulting in the eigenvectors Φi and

the corresponding eigenvalues λi.

SbS
−1
w Φi = λiΦi (13)
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The Eigenvectors corresponding to the K − 1 largest eigenvalues are now combined to
a new Matrix L.

L = [Φ∗1,Φ
∗
2, ...,Φ

∗
K−1]

T with: λ∗i > λ∗i+1 (14)

This matrix L is of size K−1xM withM denoting the number of features and can now
be used to transform the original dataset X to a K-1-dimensional space X̂ so that the
class seperability is maximized according to its mean values.

X̂ = LX (15)

In the context of this work this means the dimension of the feature space is reduced
from 66 to 3 dimensions. Figure 18 shows an example where LDA is applied on the
previously described dataset consisting of the four classes snare, kick drum, hi-hat and
mixture. Except for a few outliers the data is well seperated when looking at the �rst
three dimensions of the transformed feature space

Figure 18 � LDA applied on the dataset

2.6.3 Classi�cation: Maximum Likelihood Method

As a classi�er the maximum likelihood method is used. From the transformed training
data the means and variances, µk and Σk are calculated for each class k. Assuming
gaussian normal distribution of the data the probabilty p(k) of a new sample x belonging
to class k can be calculated:

p(k) = N (x, µk,Σk) =
1√

(2π)K det (Σk)
exp

(
−1

2
(x− µk)TΣ−1(x− µk)

)
(16)
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The sample x is now assigned to the class with the highest probability

k = arg max
k

(p(k)) (17)

As described before, the data is standardized by using the mean and standard deviation
calculated from the training data.
It should be noted that the maximum likelihood method assumes the data to be normally
distributed, which is only a rough approximation of the actual distribution (see �gure
19). Of course it would also be possible to use di�erent algorithms like k-means or
gaussian mixture models for classi�cation.

Figure 19 � The �rst two components of the lda. Gaussian ellipsoids are drawn for each
class as a reference. It can be seen that, especially for the three classes representing the
drum sounds, the assumption of normal distributed data is only a rough estimation.
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3 Results

3.1 Classi�cation Rate

The classi�er is evaluated using 10-fold cross validation. That means that the data is
divided into a training set consisting of 90% of the samples and a test set consisting of
10% of the data. The samples are selected randomly and then used to test the classi�er.
This process is repeated 10 times and the mean of the results is taken as the overall clas-
si�cation result. It should be noted that in particular strati�ed cross-validation is used
here. This means each fold has roughly the same proportions as the complete dataset,
regarding the distribution of the classes. As shown in table 2 an overall classi�cation rate

Figure 20 � Strati�ed 10-fold cross validation [ras]

of 89% was achieved using cross-validation on the whole dataset. Table 20 shows the
confusion matrix, which was generated by adding up all the individual results from the
cross-validation procedure. The highest class�cation rate was achieved for the mixture
sounds with 92%, which could be due to the fact that the biggest portion of the dataset
represents this class (see 2.5). However the rate of 86% for hi-hat sounds is higher than
that for the snare sounds which is 79%, although the dataset consists of about twice
as many snare sounds than hi-hat sounds. But when looking at the distribution of the
attack zcr 8, the spectral �atness 9 or the spectral centroid 10 it is not surprising that
for hi-hat sounds a higher classi�cation rate than for the rest of the drum sounds was
achieved, since the hi-hats have a very distinctive spectrum and can be well seperated
from the other classes.
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# Iteration Overall S K H M
1st Iteration 89.0 77.5 86.0 80.8 92.6
2nd Iteration 88.8 72.5 90.7 88.5 92.6
3rd Iteration 91.9 90.0 86.1 96.2 93.3
4th Iteration 90.7 85.0 95.4 76.9 93.3
5th Iteration 88.4 75.0 86.1 76.9 94.6
6th Iteration 91.1 85.5 95.4 88.5 92.6
7th Iteration 89.9 75.0 88.4 92.3 94.0
8th Iteration 91.1 87.5 93.0 88.5 92.0
9th Iteration 87.6 65.0 93.0 84.6 92.6
10th Iteration 90.7 85.0 86.0 80.8 95.3

Mean 89.8 79.6 90.0 85.4 93.3

Table 2 � Results of 10-fold cross-validation in percent.

Snare(486) Kick(472) Hi-Hat(271) Mixture(1485)
Snare 79.8% 13.3% 4.3% 2.8%
Kick 4.9% 90.0% 1.4% 3.7%
Hi-Hat 2.7% 10.8% 85.4% 1.2%
Mixture 1.9% 3.7% 1.1% 93.3%

Table 3 � Confusion Matrix

3.2 Testing with music

The system was tested with three di�erent music signals of about three minutes length,
each containing a short isolated drum break. The resulting hi-hat sounds were all cor-
rectly classi�ed and no false positives were produced. However 3 out of 9 kick drum
sounds and 3 out of 6 snare sounds were masked by harmonic instruments and therefore
misclassi�ed sounds. An example is shown in �gures 21 and 22. When looking at the
spectrum of the misclassi�ed snare sound, a harmonic structure of multiple harmonics
starting at around 140 Hz can be observed while the spectrum of the correctly classi�ed
snare sound at the bottom has a more �at spectrum with a single peak at roughly 180
Hz. Nevertheless the two spectral densities still show a high similarity and it is explicable
that the current spectral features e.g. spectral �atness and spectral centroid are not
su�cient to distinguish between these two kinds of spectra with high certainty.
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Figure 21 � Spectrograms of a misclassi�ed snare sound masked by other instruments
(top) and a correctly classi�ed snare sound (bottom)
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Figure 22 � PSD of a misclassi�ed snare sound masked by other instruments (top) and
a correctly classi�ed snare sound (bottom)
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4 Conclusion

In this work an algorithm to locate and classify drum sounds from digital music recordings
was developed. While relatively high classi�cation rates were achieved, the system only
worked well when it was applied on recordings where isolated drum sounds are present.
For recordings without any potential samples the system still produces some results that
obviously can not be correct. Therefore the algorithm in its current state is not perfectly
suited to analyze larger music collections since it still requires the user to manually listen
through results to sort out the misclassi�ed samples. It would be necessary to include
further features which model the tonality and the harmonic structure of a sound to better
seperate (harmonic) mixture sounds and drum sounds e.g. fundamental frequency and
tristimulus estimation. Furthermore it could be of advantage to better represent the
temporal evolution of the spectral features for example by using hidden markov models or
by simply including more statistical measures. When looking at the temporal waveforms
of the snaresounds in the dataset, it can be seen that the temporal evolution of the
waveform can be approximated by a exponential function. Another aproach would be
to use a threshold to distinguish between drum and mixture sounds. These thresholds
could be de�ned by exponential functions by a time constant τ (see �gure 23). For the
use with large music collections maybe a second classi�cation step could help to improve
the classi�cation rate in between the three drum classes. As a �nal remark it should be
relatively simple to include more categories to the classi�er for example toms, cymbals
and hand claps or a di�erentiation between open and closed hi-hats by including more
samples to the training set.
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Figure 23 � Temporal patterns of examplary snare sounds and threshold functions. The
temporal curve is lowpass �ltered and normalized to the maximum value. snare1.wav,
snare2.wav and snare3.wav are wrongly classi�ed snare sounds masked by other (har-
monic) instruments. The thick red (τ = 30) and green (τ = 60) lines represent expo-
nential functions for the corresponding time constant τ .
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5 Appendix: Documentation of the code

5.1 Feature Extraction: computeFeatures.m

Computes audio features for given signal x
[Data, Labels] = computeFeatures(x,fs) calculates all audio features and saves
them as a single vector in Data, Labels is a cell array containing the description of each
value in Data

[Data, Labels] = computeFeatures(x, fs, FEATURE) calculates the feature(s) spec-
i�ed in FEATURE and saves them as a single vector in Data, Labels is a cell array con-
taining the description of each value in Data

Features include:
'temp-centroid'
'attack-zcr' attack zero-crossing-rate
'dec-sp-�atness'
'dec-sp-centroid'
'dec-sp-kurtosis'
'dec-sp-skewness'
'dec-zcr' decay zero-crossing-rate
'spec-bands' relative bark band energy
'mfcc' Means and Variances of the mfcc's 1-13
'corr' Correlation coe�cients 1-12

The features calulated when calling the function without the FEATURE argument, are
speci�ed by the variable varargin.
Executing the function with empty arguments [ , L] = computeFeatures([],[]),
returns the labels of the features as strings inside the vector L. For exmaple: L{3} re-
turns the name of the third feature.

The function getFeatures.m calls computeFeatures for any given �lename. For ex-
ample: [data, labels] = getFeatures('snare1.wav').

Files needed by computeFeatures.m :

- �les contained by /features

- �les contained by /rastamat

5.2 Generation of the training data: get_data.m

In this script the features for the training data are computed and saved to the �le
`train_data_kshm.mat' together with the labels and the mean and variance values,
necessary for feature standardization.
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After that linear discrimant analysis is performed on the data. The resulting transforma-
tion matrix and the statistics of the transformed data are saved as a structured variable
to the �le `lda_data_kshm.mat'.

Files needed by get_data.m :

- computeFeatures.m

- getFeatures.m

- standardize.m

- ldaDrums_Mix.m

- �les contained by /features

- �les contained by /rastamat

5.3 Cross validation: evaluate_model.m

In this script 10-fold cross validation is performed using the training data. After partition-
ing the data, training and testing is performed for all the combinations. For classi�cation
the maximum likelihood method is used.
The probabilities are computed using the function mvnpdf(testData, mean, covariance)

Files needed by evaluate_model.m :

- train_data_kshm.mat

- partitionVector

- standardize.m

- ldaDrums_Mix.m

5.4 Main program: prototype.m

Here the alforithm can be tested using a audio �le of choice. Running this script will
write the extracted sounds to cell arrays: SnareCandidates, KickCandidates and
HiHatCandidates. For each categoruy the N_best sounds with the highest probabilty
are saved to the cell arrays: BestSnares, BestKicks and BestHiHats and can be
saved to a speci�ed folder. Note: The code for saving the sounds at the end of the
script is commented out by default.

Files needed by prototype.m :

- train_data_kshm.mat

- lda_data_kshm.mat

- crestFactor.m

- silenceRatio.m

- computeFeatures.m

- getFeatures.m
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- partitionVector

- standardize.m

- ldaDrums_Mix.m

- �les contained by /features

- �les contained by /rastamat

- �les contained by /onset_detection


