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Abstract: The diploma thesis at hand describes the implementation of a psychoa-
coustic hearing model for modeling spectral loudness of sounds in noise, i.e. mixed
instrumental sounds. The model accounts for all know physical and physiological ef-
fects between the sound source and the cerebral stage. It is used to visualize the spectral
behavior of mixed instruments. It is also used to design a perceptual experiment that
investigates the subjects’ ability to identify different instruments in masking environ-
ment. Different levels of masking are indicated with the aid of the new defined measure
”loudness quotient” that relates masked to unmasked (original) loudness. Instruments
with a quotient of 10 % or smaller or with a residual loudness of 1 sone or less are
identified to be critical in mixdowns because they cannot be identified adequate. A
linear regression model is defined and proved to model the relation between the quo-
tient of loudness and the identification probability of mixed instruments. Beside that
a new approach for predicting binaural unmasking is proposed and tested on empirical
data. The results of the study can be used for optimizing existing automatic mixdown
algorithms, as groundwork for developing new mixing algorithms or for the revise of
ordinary mixing console approaches and user interface concepts.

Diese Arbeit beschreibt die Implementierung eines psychoakustischen Gehörmodells,
das die spektrale Lautheit maskierter (gemixter) Instrumente modelliert. Das Modell
berücksichtigt alle bekannten physikalischen und physiologischen Effekte zwischen der
Schallquelle und der cerebralen Verarbeitung. Es wir dazu verwendet das spektrale Ver-
halten gemixter Instrumente zu visualisieren. Weiters wird das Modell herangezogen
um ein Experiment zu designen, bei dem die Fähigkeit der Probanden ein maskiertes
Instrument zu erkennen untersucht wird. Die verschiedenen Stufen der Maskierung
werden durch die neu definierte Maßzahl des Lautheitsquotienten gekennzeichnet, der
maskierte und unmaskierte (originale) Lautheit in Relation setzt. Es wird gezeigt, dass
Instrumente mit einem Quotienten von 10 % oder kleiner oder mit einer Restlautheit
von 1 sone oder weniger im Mix schlecht oder garnicht identifiziert werden können. Um
die Beziehung von Lautheitsquotient und Identifikationswahrscheinlichkeit zu mod-
ellieren wird ein lineares Regressionsmodell definiert und dessen Gültigkeit gezeigt.
Weiters wird ein neuer Ansatz binaurales Demaskieren zu modellieren vorgeschlagen
und per Vergleich mit empirischen Daten überprüft. Die Ergebnisse der Studie können
dazu verwendet werden bereits existierende automatische Mixdownalgorithmen weiter
zu entwickeln. Weiters können die Ergebnisse als Grundlage für die Entwicklung neuer
Mixdownalgorithmen oder für die Überarbeitung herkömmlicher Mischpultkonzepte
und Ansätze für Mensch-Maschine Schnittstellen verstanden werden.
Keywords: psychoacoustic, hearing model, auditory masking model, masking thresh-
old, loudness model, partial masking, perceptional model, timbre, temporal masking,
binaural unmasking, binaural loudness summation, fundamental note, partial tone, dis-
crimination of instruments, audibility, partial loudness, specific loudness, instantaneous
loudness, short-term loudness, long-term loudness, instantenous partial loudness IPL,
short-term partial loudness STPL, automatic mixing, identification threshold
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1 Introduction

In [4] authors proposed an algorithm that lets the user decide for a single impor-

tant instrument to enhance instead of finding a compromise for all instruments.

It works with gain attenuation instead of adapting filter settings. It finds a kind

of spectral centroid for each instrument and derives spectral similarities only

from this single scalar which now can be refined to a precise psychoacoustic

model.

The results of the investigations can also be used to draw consequences on

ordinary mixing console approaches. Instead of just attenuate or gain the level of

an instrument without any perceptual motivated connections between the faders,

it seems nearby to create a tool that can do more. One can think of a faderbank

that directly lets the user touch the perceptual importance of an instruments.

Beside that this mixing tool can ensure that once a desired LQ is found it does

not changes in long term meanings again, even when more instruments are added,

because the algorithm temporarily updates the consoles settings. Psychoacoustic

visualization can be used to show what frequencies of what instruments compete

against each other so that the engineer can find better filter settings more easily

and faster.

Along the recording chain, the sound field of one or more instruments is

transformed from the mechanic domain into the electric domain by one or more

electroacoustic transducers (microphones). If you electronically sum these signals

to any kind of mixdown format (e.g. Stereo or 5.1), on the one hand the aim may

be to picture natural sound fields as close as possible to reality, on the other hand

unreal acoustic scenarios are created consciously or unconsciously. The paper at

hand develops an evaluating description for different scenarios, relating to tested

perception psychological effects.

It is for instance possible to look at the spectrum of a signal and deduce

its masking characteristics, i. e. calculate the hearing thresholds that variable

concerning time and frequency. If you mix a signal to a second signal, parts of

this newly added signal will be audible, while others will remain inaudible. But

also the newly added signal works as a masker and covers or reduces parts of the

first signal. These proportions are dependent on enormous fluctuation in time

and frequency and are graphically and quantitatively visualized by the use of

signal theoretical and statistical tools, such as spectrograms and specific loudness

graphs. Also the positioning in the panorama of the mixdown has effects on these

masking relations and is investigated shortly in section 2.10.

Section 2 describes the theory and implementation of a hearing model given

by [1], [2] and [14]. Section 3 describes the design, conduction and results of

a listening experiment that determines the relation between the identification

probability of masked instruments and the level of masking. Section 4 subsumes

the results and lists possibilities of related further research.
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Figure 1: Block diagram of the used hearing model, the inputs SL, ML, SR

and MR are signals and maskers of the left and right loudspeaker of the stereo

arrangement and will further be explained in section 2.2.1

2 The hearing model

The first step is to find a model that can predict whether a sound embedded in

an acoustical environment is audible or not. Further on the model must predict

the perceived loudness spanning over the frequency axis (i.e. Specific Loudness

N’, [sone/bark]).

Figure 1 shows the structure of the hearing model. Its blocks (i.e. outer ear

filtering, middle ear filtering, time-frequency analysis, cochlear or inner ear fil-
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tering, excitation-to-mask ratio, specific loudness calculation, binaural modeling

and summation) are discussed later in detail.

2.1 Calibration

Usually recordings are not calibrated. Here it is an aim to model nonlinear effects

of human hearing such as shallower masking threshold for higher masker levels,

therefor the model has to be calibrated for incoming and outgoing signals to

map absolute sound pressure levels to the numerical space of the computer.

2.1.1 Incoming signals

The input calibration is used for analyzing recorded material. A calibration signal

Scal has to be recorded. Its RMS1 level has to be known as ScaldBA,rms,target.

The calibration is used to map a given input level to the numerical domain

of the computer. According to [5] the A-weighted sound pressure level (SPL) of

LListRef is mapped to a numerical level of -18 dB FS. Each reproduction channel

is calibrated separately to LListRef , given by equation 1, where n is the number

of the reproduction channels.

LListRef = 85− 10 ∗ log(n) dB(A) (1)

The following arithmetics bring the input factor gain that has to be multiplied

with the input signal to calibrate.

headroom = 18 dB (2)

ScalFS,rms,actual = 20 ∗ log

√√√√ 1

N
∗

N∑
0

Scal2 (3)

ScaldBA,rms,actual = LListRef + headroom+ ScalFS,rms,actual (4)

gain = 10
ScaldBA,rms,target−ScaldBA,rms,actual

20 (5)

Example:

The headroom is 18 dB, the reference listening level for a mono setup is

85 dB(A). The RMS value of the numerical recorded calibration signal is mea-

sured according to equation 3. Its value ScalFS,rms,actual equals -55 dB. This

corresponds to a physical level given by equation 4.

1 root mean square
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ScaldBA,rms,actual = 85 dB + 18 dB + (−55 dB) = 48 dB

In the physical domain the level of the calibration signal ScaldBA,rms,target
equals 94 dB(A)rms. The input gain for the right input mapping is given by

equation 5.

gain = 10
ScaldBA,rms,target−ScaldBA,rms,actual

20 = 10
94−48

20 = 199.5262

Sigcalibrated = 199.5262 ∗ Siguncalibrated

2.1.2 Outgoing signals

The output calibration is used to reach a desired output level for demonstrat-

ing specific sound pressure levels for listening experiments. According to [5] the

A-weighted sound pressure level (SPL) at the listening point is given by equa-

tion 1. This reference listening level is mapped to -18 dB FS (full scale), which

corresponds to a 18 dB headroom.

The following equations bring the gain factor for synchronizing physical and

numerical representation.

headroom = 18 dB (6)

LFSrms,target = LdBArms,target − LListRef − headroom (7)

LFSrms,actual =

√√√√ 1

N
∗

N∑
0

x2 (8)

gain = 10
LFSrms,target−LFSrms,actual

20 (9)

Example:

A signal is created in the numerical space. The desired output level for the

signal, named LdBArms,target equals 47 dB. The listening reference level is 85

dB(A), the headroom is 18 dB. LFSrms,target is derived form equation 7.

LFSrms,target = 47 dB − 85 dB − 18 dB = −56 dB

LFSrms,actual can be measured using equation 8. In MATLAB e.g. 0 dB FS

correspond to +/- 1, LFSrms,actual could be measured e.g. as -80 dB, depending

of the procedure of which the signal was created. Using equation 9 it is easy to

derive the needed gain factor for the correct mapping of the signal.
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gain = 10
−56 dB−(−80 dB)

20 = 15.8489

Sigcalibrated = 15.8489 ∗ Siguncalibrated

Calibration of the output amplifier:

In an experimental free field setup, one can create a pink noise signal or a 1

kHz sinusoid signal with e.g. LdBArms,target = 94 dB2, and measure the SPL

at the listening point. The output amplifier must than be set for the measuring

instrument to display 94 dB(A), rms, slow.

In an experimental phones setup, the output amplifier must be set that the

Outer ear- / Phones transfer function (see section 2.2.2) is 0 dB at 1 kHz.

2.2 Outer ear filtering

In general there are some different approaches for modeling the outer ear: An

often cited concept is e.g. the MAF/MAP concept. Those frequency curves could

be used for modeling the outer ear. MAF stands for ”minimum audible field”

and corresponds to the absolute hearing threshold in 0◦ free field representation.

The abbreviation MAP stands for ”minimum audible pressure” and corresponds

to the threshold related to sound pressure at the ear drum. Therefor MAP is

likely to be used for headphone modeling.

An extensive but effective way to model the outer ear in an particular exper-

iment situation is to measure its transfer function. The benefit of this method

is that one can measure everything effecting the signal between its numerical

representation in the computer and the arrival at the ear drum. This takes into

account the whole playback setup including the frequency response of the DAC’s,

the power amplifiers, the speakers, room properties (if wanted) as well as torso

reflections, pinna reflections and resonance effects in the ear canal.

2.2.1 Stereo setup

Figure 2 shows the transfer paths from stereo loudspeakers to the listeners’ ears.

The left speaker’s signal L is built by the sum of the left signal part SL and

the left masker part ML. The right speaker’s signal R is built by the sum of the

right signal part SR and the right masker part MR. The propagation paths from

the left and the right loudspeaker to the left and right ear are described by the

transfer functions HRTF30,L, HRTF30,R, HRTF330,L and HRTF330,R
3 which

are depicted in figure 2. Those function have been measured using a bruel and

2 94 dB SPL at 1 kHz = 1 PaRMS
3 Head Related Transfer Function
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HEAD

L = SL + ML R = SR + MR

HRTF

Signal L +
Mask L

Signal R +
Mask R

330,R HRTF30,L

HRTF330,L HRTF30,R

Figure 2: Crosstalk schematic for stereo setup

kjaer dummy head microphone (static head at typical listening position). The

used loudspeakers were Genelec 1032 A, with all Dips off (linear response). The

input sensitivity 100 dB SPL @ 1 m was adjusted to + 1 dBu4.

Figures 3 and 4 show the transfer functions where all room-related effects

were excluded to get smoother curves without comb filter notches (free-field

conditions, only 64 samples of the impulse response were measured). One can

expect symmetrical measurements, but realistic conditions show some variances.

Equations 10, 11, 12 an 13 describe the transfer and crosstalk in a stereo

setup, convolving the time signals SL, SR, ML and MR with the impulse re-

sponses HRTF330,L, HRTF30,L, HRTF330,R and HRTF30,R.

SignalL = HRTF330,L ∗ SL+HRTF30,L ∗ SR (10)

MaskL = HRTF330,L ∗ML+HRTF30,L ∗MR (11)

SignalR = HRTF30,R ∗ SR+HRTF330,R ∗ SL (12)

MaskR = HRTF30,R ∗MR+HRTF330,R ∗ML (13)

2.2.2 Headphones setup

The model structure for headphones setup is simpler than the model structure

for stereo setup because there is no noteworthy crosstalk from one ear to the

other.

4 0 dBu = 0.775 V
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Figure 5: Measured outer ear- / phones transfer function, right ear

SignalL = HRTFL ∗ SL (14)

MaskL = HRTFL ∗ML (15)

SignalR = HRTFR ∗ SR (16)

MaskR = HRTFR ∗MR (17)

When measuring transfer functions for a headphone setup a stochastic ele-

ment has been observed: Every time the phones are put off and on again results

for higher frequencies differ from previous measures. To compensate those effects

five measurements were executed and their absolute transfer functions were av-

eraged. The length of the impulse response was less than 512 samples, so a

512-point DFT5 was calculated. No comb filter effects were measured even for

extremely high frequency resolution (65536-point DFT).

The measurings have been carried out using a bruel and kjaer dummy head

microphone and stereo closed back dynamic headphones, circumaural design:

AKG K 271 MK II.

2.3 Middle ear filtering

The transfer function through the middle ear has been taken from [1]. The

function describes the transfer from the eardrum through the auditory ossicles

5 discrete fourier transformation
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Figure 6: Measured outer ear- / phones transfer function, left ear

Figure 7: Middle ear transfer function taken from [1]

and the middle ear cavity to the oval window.
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2.4 Filter realization

The filters for the phones-setup outer ear and the middle ear can either be

realized as linear phase FIR-filters6 or as minimum phase IIR-filters7. The IIR

realization has been chosen because of two reasons: 1. The model is not to be

dealing with phase relations of the signals, only magnitude properties will be

modeled. 2. An IIR-filter has a smaller order and therefor a smaller delay time

(critical in real time applications). The details of the realization are as following:

MATLAB’s method FIR2 was used to design a 1024th-order FIR-filter. RCEPS

calculates the unique minimum-phase sequence that has the same real cepstrum

as the sequence of the filter’s coefficients. Method PRONY [6] is used to find the

coefficients of the IIR-filter having the same transfer function as the FIR-filter.

An IIR-filter with 30 numerator- and 30 denumerator- coefficients (i.e. 30th-

order) achieves the middle ear’s data by less than 1 dB error for frequencies

greater than 40 Hz. The two outer ear filters for phones setup have to be 70th-

order to achieve the measured data by less than 1.5 dB for frequencies greater

than 40 Hz. That is because the measured outer ear data is not as smooth as

the middle ear data.

The free-field outer ear filters are simply realized as FIR-filters of 64th order,

using the measured impulse response as the filters coefficients.

2.5 Time-frequency analysis

Because the filter bank described in section 2.6 is realized as multiplication in

frequency domain, the signal has to be transformed from the time domain to the

frequency domain8. For audio analyzing there has been observed a problem using

the common DFT-algorithm. While frequency resolution and time resolution of

DFT-analyzed signals are constant, human hearing works different. According

to musical data low frequencies tend to be relative stable in loudness, while the

intensity at high frequencies in average changes faster. It is also important that

the frequency resolution for low frequencies can somehow image pseudo-discrete

spectral bins in a way that those partial tones of the signal are not smeared over

the frequency scale too much.

In [2] an analysis algorithm is suggested for the used model. The algorithm

is based on 6 parallel dft calculations, each of them using different block lengths

and frequency time resolutions. The blocks are hann-windowed each and the 6

independent dfts bring the results for 6 different frequency ranges, achieving the

demands described above. Table 1 shows what blocklength was used for what

frequencies.

6 finite impulse response
7 infinite impulse response
8 Signal’s intensities x2 are measured to obtain the energy quantity of excitation.
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Table 1: Componentual DFT, composition of different block lengths

bin numbers block length frequencies

1 - 6 2048 samples below 80 Hz

7 - 32 1024 samples 80 - 500 Hz

33 - 80 512 samples 500 - 1250 Hz

81 - 162 256 samples 1250 - 2540 Hz

163 - 259 128 samples 2540 - 4050 Hz

260 - 1024 64 samples 4050 - 16000 Hz

Figure 8: Staged blocklengths for time-domain to frequency-domain transforma-

tion

This calculation gives the result spectrum for the time symmetrically centered

to the analyze blocks. The blocks are moved forward by 1 ms, so that for every

ms a spectrum is calculated.

The following figures show the spectrograms for blocklengths of 2 ms and

64 ms. The last figure shows the componentual spectrogram described above.

The analyzed signal was a 1 s piece of a rock song. One can observe that for

short blocklengths areas of the same color (i.e. spectral magnitude) tend to

spread vertically which testifies for high temporal resolution but poor frequency

resolution. For long blocklengths these areas tend to spread horizontally which

testifies for poor temporal resolution but high frequency resolution.

Another way to show different frequency resolutions is transform the analyze

window to the frequency domain. The figures show the used windows for 64 and

for 1024 samples, and their frequency responses.

The relative sidelope attenuation for a 64 sample window is 42.5 dB and the

mainlobe width (-3dB) is 0.039063 π [rad/sample] or 625 Hz @ fs = 32 kHz.

The relative sidelope attenuation for a 1024 sample window is 42.7 dB and

15



Figure 9: Spectrogram, blocklength = 2 ms

Figure 10: Spectrogram, blocklength = 64 ms
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Figure 11: Spectrogram, all used blocklength combined

Figure 12: Hann-Window, 64 samples, time-domain versus frequency-domain
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Figure 13: Hann-Window, 1024 samples, time-domain versus frequency-domain

the mainlobe width (-3dB) is 0.0024414 π [rad/sample] or 39 Hz @ fs = 32 kHz.

2.6 Cochlear filtering

The prediction if a testsignal in a masker environment is audible and how loud

the testsignal is percepted, needs a calculation of the masking threshold that is

derived from the neuronal excitation pattern on the basilar membrane.

Observations from [7] lead to an approach where the basilar membrane is

modeled by a filter bank.

1. White noise (constant power over frequency) has a rising masking threshold.

The filters of the filter bank therefor must have a growing bandwidth with

growing frequency.

2. Tonal maskers have lower masking thresholds than broadband maskers which

comes from summation over certain bandwidths (i.e. critical bandwidths).

If more than one tonal component is in one critical band, the masking level

rises. Therefor it seems a bit raw to simply categorize signals in tonal and

non tonal (like done in [8]).

3. If two partials of the same phons-level do lie within a particular frequency

range (i.e. a critical band) and therefor excite the same area of the basilar

membrane the overall excitation rises by 6 dB, what means the percepted

loudness does not double. When two partials of the same phons-level are

well apart in frequency loudness does double.

18



Figure 14: Masking threshold of white noise

Figure 15: Masking threshold of 1 - 5 sinusoids within one critical band
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2.6.1 Details and implementation

Important for the aim of modeling masking thresholds is the spreading function

of excitation. As suggested in [9] the frequency behavior of the basilar membrane

can be modeled by a filter bank of roex filters, where the output of each filter

corresponds to the neuronal excitation at a specific frequency and area of the

membrane. The shapes of the filters depend on their center frequencies fc and

the arriving signals’ levels X(f). The filters are symmetrical for an input level of

51 dB.

The excitation E is given by:

E(fc) =

fs/2∫
f=0

N(f) ∗W (f, fc) df (18)

where N(f) is the spectrum of the masker and W(f) is the filter shape at the

excitation’s frequency. The integral of this equation models the additive effects

of masking (figure 15).

The filter shape W(g) is given by:

W (g) = (1 + p ∗ g) ∗ e(−p∗g) (19)

where g is the normalized deviation from the center of the filter and p is a

parameter determining the slope of the filter skirts.

g =
|fc− f |
fc

(20)

where fs is the signal’s frequency.

The value of p mostly differs for the upper and the lower skirts of the filters

giving the parameters pu and pl. pu is assumed to be independent of the input

level.

pu =
4 ∗ fc
ERB

(21)

where ERB is the filter’s equivalent rectangular bandwidth given by

ERB = 24.673 ∗ (1 +
4.368 ∗ fc

1000
) (22)

where fc is inserted in Hz.

For input levels of 51 dB the filters are symmetrical and therefor

pl(51) = pu(51) (23)

The level dependency of the filters’ lower skirts is described by
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Figure 16: Cochlear modeling: roex filter shapes at 51 dB

pl(X) = pl(51)− 0.35 ∗ (
pl(51)

pl(51, 1k)
) ∗ (X − 51) (24)

where pl(51, 1k) is 30.2012922, according to equation 21, 22 and 23. The

algorithm was adapted from [10].

Figures 16 and 17 show the roex filter shapes for different frequencies and

levels. The filters’ lower skirt flattens for higher levels, whereas for lower levels

the skirts are sharper. Filters at higher center frequencies are less sharp.

The filterbank has to be implemented in the following way: First the filter-

levels have to be determined by filtering the sum of the signal and the masker by

symmetrical auditory 51dB-filters. These levels give the values X(f) for equation

24 and give information about the spread of excitation and masking.

Figures 18 and 19 show filter levels for a sinusoid signal and for noise. The

filter levels in figure 19 are below 100 dB because 100 dB is the sum level over

frequency. The levels are not constant over frequency because of the outer ear

filter and the middle ear filter.

Next the signal and the masker run through the now given filterbank sepa-

rately which brings the excitation patterns Esig and Emask. Let us bring in a

perceptual motivated frequency scale ”number of ERBs” taken from [1].

number of ERBs = 21.4 ∗ log(0.00437 ∗ f + 1) (25)
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Figure 17: Cochlear modeling: roex filter shapes at 100 dB

Figure 18: Nonlinear filter bank: filter levels over frequency for a 1kHz, 100 dB

sinusoid
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Figure 19: Nonlinear filter bank: filter levels over frequency for a 100 dB white

noise

Figure 20: Perceptually motivated frequency scale: ”number of ERBs”
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Figure 21: Excitation patterns for 1 kHz sinusoids for the levels 20 to 100 dB in

10 dB steps

Excitation is measured in dB above E0 where E0 is the excitation for a 1

kHz sinusoid at 0 dB SPL.

Figure 22 shows the construction of excitations patterns from auditory fil-

ter shapes. The upper diagram shows a 1 kHz sinusoid (dotted line) and the

weighting functions of the filters surrounding 1 kHz. The excitation e.g. at 700

Hz is determined by the 700 Hz filter’s output (a). Excitation levels at all other

frequencies are determined by their corresponding filters each (b - e).
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Figure 22: Construction of excitation patterns from auditory filter shapes [20]
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Figure 23: Excitation at threshold in quiet

2.7 Masking threshold

As an extension of equation 18 the excitation of a signal at masking threshold

is given by:

Ethrn = K ∗
fs/2∫
0

N(f) ∗W (f) df + Ethq (26)

where Etrhn stands for excitation at threshold in noise, K (see section 2.7.1)

is the excitation-to-mask ratio and Ethq is the excitation at threshold in quiet.

That means, if a masker becomes by and by quieter and quieter, the masking

threshold becomes by and by the absolute hearing threshold.

The excitation at threshold in quiet was also taken from [1], assuming to be

constant 3.6 dB for frequencies above 500 Hz and rising for lower frequencies.

Fig. 24 shows analyzing for a flute playing a piano a2. At spectral peaks (i.e.

E � Ethq) the red curve is K(f) dBs below the blue curve. Where excitation is

lower (i.e. E is slightly greater than Ethq or smaller) the threshold is dominated

by the threshold in quiet ( f < 8 ERBs and f > 29 ERBs).

2.7.1 Experiment: adjusting the model

In [1] the K-factor (see section 2.7) is suggested to be constant -3 dB for fre-

quencies above 1 kHz. Below 1 kHz K rises markedly. Its values are shown in

figure 25.
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Figure 24: Excitation, Excitation at threshold in quiet, Excitation at threshold

in noise

An experiment with 4 ad hoc on hand probands was conducted to adjust

the implementation of the masking threshold model. To determine the 79.4 %

threshold, according to [11], a transformed up-down method was used (see [12]).

The algorithm was adapted from [13]. The masking threshold was measured for

a white noise masker of 85 dB SPL, and sinusoid testtones at the frequencies

250, 500, 1000, 2000, 4000 and 8000 Hz. The experiment was separated into

12 runs for each proband (6 frequencies times 2 ears). Before the experiment

the probands were asked to adjust the levels of each testtone for each run to

be clearly detectable in the masking environment (figure 26). Those levels gave

the starting points for the following convergence procedure. A run consists of

several trials. In each trial two stimuli in two time intervals were presented to

the proband. Both stimuli contained the masker, whereas randomly, only one

stimulus contained the testtone. The proband was forced to say if the first or

the second interval contains the testtone (figure 27). If the testtone is well below
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Figure 25: Excitation-to-mask ratio (K-factor), suggested by [1]

masking threshold the probability for a correct answer is 50 % on average. If the

testtone is well above masking threshold this probability is nearly 100 %. The

convergence procedure works as follows: Everytime the proband gives a wrong

guess, the testtone’s level is increased by a certain amount. If the proband gives

three right answers in a row the testtone’s level is decreased by the same amount.

This amount is part of tuning the experiment and was chosen to be 6 dB until the

first turn point is reached and 3 dB for the rest of the run. Another 4 turnpoints

are then awaited. After those first 5 turn points the standard deviation of the

testtone’s levels is measured before every additional turnpoint. If the standard

deviation is below 10 dB or more than 10 turn points were counted for the active

run, the run was ended. The measured threshold is given by the mean value of

all testtones’ levels of one run.

The typical courses of two runs are shown in figure 28. Both runs for the left

and the right ear contain 5 turnpoints.

In general it is useful to define any threshold located somewhere around 75

%. For a transformed up-down method it is easy to measure the 79.4 % threshold

( 3
√

0.5).

Figures 29, 30, 31 and 32 show the masking threshold results for each proband

separated into left and right ear, the standard deviations of the probands’ an-

swers, and the model prediction for the tested scenario built by using the ad-

28



Figure 26: Adjusting the start levels for measuring the masking threshold. Those

start levels have great influence on the following convergence procedure. The

proband uses the +, - and play buttons to adjust the level of the testtone to be

just audible.

Figure 27: The proband is forced to guess in which time interval a testtone is

audible
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Figure 28: Convergence procedure: typical staircase of presented test tone levels,

1 run consist of several trials. Three correct answers in a row effect a decrease

of the test tone level, one false answer effects an increase of the test tone level.

Table 2: Statistics of the measurement: mean, median and standard deviation

f 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz

mean -33.5 dB -34.0 dB -33.4 dB -33.5 dB -33.4 dB -32.7 dB

median -33 dB -33 dB -33 dB -33 dB -33 dB -33 dB

std 7.9 dB 8.1 dB 8.0 dB 8.2 dB 7.6 dB 7.6 dB

justing factor k proposed by [1].

Table 2 shows the statistics for the results of the convergence procedures. The

mean and the median of each frequency lie close together, therefor the quality

of the data is good.

Figure 33 shows the averaged empirical data for all probands and all ears,

as well as the model prediction derived from Moore’s k-factor. It was found,

that measured thresholds lie markedly below the model prediction. The greatest

deviation is about 7 dB, and measurement data is below predictions for all

frequencies. If the k-factor was reduced by 5 dB (black line) the compliance of

the prediction and the measurement is much better. The greatest deviation is
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Figure 29: Measured masking threshold for a white noise masker, 85 dB(SPL),

Proband 1
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Figure 30: Measured masking threshold for a white noise masker, 85 dB(SPL),

Proband 2
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Figure 31: Measured masking threshold for a white noise masker, 85 dB(SPL),

Proband 3
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Figure 32: Measured masking threshold for a white noise masker, 85 dB(SPL),

Proband 4
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Figure 33: Averaged result versus model prediction

than about 3.4 dB at 8 kHz.

Figure 34 shows the same experiment for just one proband and a narrow

band noise masker centered at 410 Hz. Measured frequencies were 150, 250, 410,

650 and 1000 Hz. Again, all predictions are to high, except for 150 Hz. This

could be a result of imperfect experiment conditions (i.e. low frequency ambient

noise). All other deviations are assumed to be proband’s variance.
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Figure 34: Measured masking threshold for a narrow band noise masker, 85

dB(SPL)
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2.8 Loudness of steady sounds in noise

This section describes how percepted loudness is derived from excitation pat-

terns. At first perception of steady sounds is described. As further development

time varying sounds in time varying noise will be covered later on in section 2.9.

2.8.1 Partial or specific loudness

Predicting percepted loudness is not a linear procedure. It is effected by the

spectral shape and the absolute level of a signal. Therefor calculations have

to be done for a number of frequency bands (see section 2.6) in a calibrated

environment (see section 2.1).

”The physical characteristics of sound that mediate the perception of timbre

include spectrum and envelope. Timbre is also known in psychoacoustics as tone

quality or tone color. For example, timbre is what, with a little practice, people

use to distinguish the saxophone from the trumpet in a jazz group, even if both

instruments are playing notes at the same pitch and loudness.” [21]

To objectively judge about partly masked (i.e. mixed) instruments it is nearby

to use the specific loudness (i.e. loudness versus frequency) derived from the

described model, because it can predict what spectral parts of the instrument

are audible at what time (corresponds to spectrum and envelope).

Therefor an important indicator for timbre perception is partial loudness.

Those loudness patterns are derived from excitation patterns and show which

parts of a signal’s spectrum have what share of the signal’s overall loudness. Its

unity is [sone/bark] and its derivation is shown in [1].

We have to distinguish between 4 cases:

1. Esig ≥ Ethrn ∧ Esig + Emask ≤ 1010:

(Signal is above masking threshold, masker and signal do not exceed 100 dB)

2. Esig < Ethrn ∧ Esig + Emask ≤ 1010:

(Signal is below masking threshold, masker and signal do not exceed 100 dB)

3. Esig ≥ Ethrn ∧ Esig + Emask > 1010:

(Signal is above masking threshold, masker and signal do exceed 100 dB)

4. Esig < Ethrn ∧ Esig + Emask > 1010:

(Signal is below masking threshold, masker and signal do exceed 100 dB)

The inequalities of Esig and Ethrn describe if a signal in noisy environment

is above or below masking threshold. The inequalities of Esig +Emask and 1010

describe if the sum of masker and signal is above or below 100 dB9. For those

9 Excitation is an energy quantity, therefor 1010 = 100 dB
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four cases four different perceptual behaviors have been investigated and therefor

four different equations for partial loudness have been formed.

Case 1

N
′

sig = C ∗ {[(Esig + Emask) ∗G+A]α −Aα}

− C ∗ {[(Emask ∗ (1 +K) + Ethq) ∗G+A]α

− (Ethq ∗G+A)α} ∗
(
Ethrn
Esig

)0.3

(27)

Case 2

N
′

sig = C ∗
(

2 ∗ Esig
Esig + Ethrn

)1.5

∗
{

(Ethq ∗G+A)α −Aα

[(Emask ∗ (1 +K) + Ethq) ∗G+A]α − (Emask ∗G+A)α

}

∗ [(Esig + Emask) ∗G+A]α − (Emask ∗G+A)α

(28)

Case 3

N
′

sig = C2 ∗ (Esig + Emask)0.5

− C2 ∗ {[(1 +K) ∗ Emask + Ethq]0.5

− (Ethq ∗G+A)α +Aα}
(
Ethrn
Esig

)0.3

(29)

Case 4

N
′

sig = C ∗
(

2 ∗ Esig
Esig + Ethrn

)1.5

∗
{

(Ethq ∗G+A)α −Aα

[Emask ∗ (1 +K) + Ethq]0.5 − (Emask)0.5

}

∗ [(Esig + Emask)0.5 − (Emask)0.5]

(30)

N
′

sig is the partial loudness of a signal, the low-level gain of the cochlear

amplifier G is given by figure 35, the slope design factor A is given by figure 36

and compression exponent α is given by figure 37.

The constant C is chosen so that the peak specific loudness of a 1-kHz sinusoid

of 40 dB SPL is predicted as 0.2313 sone/bark for a binaural model (C = 0.047)
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Figure 35: low-level gain of the cochlear amplifier G [dB]

or 0.1732 sone/bark for a monoaural model (C = 0.0352). The constant C2 is

chosen so that eqs. 27 and 29 are equal at Esig = 1010 (C2 = C/1040000). These

target values are read out from the model’s implementation.

Figure 2.8.1 shows the relation between a signal’s excitation level and its

partial loudness without a masker. One can see the frequency dependence in

different colored curves. Every excitation at threshold in quiet corresponds to a

frequency (see section 23). Here the pairs are: 3.6 dB and 500 Hz and above, 6.3

dB and 253 Hz, 14.5 dB and 108 Hz, 20.2 dB and 74 Hz, 26.2 dB and 52 Hz.

The black horizontal line shows specific loudness at hearing threshold at 0.00537

[sone/bark] that is subtended by the curves at their threshold excitation levels.

The curves are divided into three sections: One section for excitation levels above

100 dB or specific loudness above 4.62 sone/bark, one section for signals below

threshold (i.e. N ′ ≤ 0.00537 [sone/bark]), and one section for moderate levels.

The loudness at threshold of hearing is not defined is 0 sone because of common

threshold definition. In a 2AFC-Experiment the hearing threshold is defined as

the level for which 75 percent of the probands’ answers are correct. Therefor can

a signal’s loudness at hearing threshold not be 0 but simply ”hard to recognize”.

When a masker is turned on the signal’s loudness is damped. Figure 2.8.1

shows signal excitation level versus signal specific loudness for 1 kHz for different

masker excitation levels. The curve Emask = −∞ equals the leftmost curve in

the figure above. For other masker excitation levels the signal excitation has

to reach a certain level to be audible i.e. the intersections of the curves with
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Figure 36: Slope design factor A

Figure 37: Compression exponent alpha
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Figure 38: Relation of excitation level and specific loudness for different frequen-

cies

the horizontal line of hearing threshold, that are K(f = 1000Hz) dB below

Emask. As Esig rises higher above threshold the signal’s loudness convergates to

its undamped value.

2.8.2 Overall or total loudness

The overall or total loudness in sone is calculated by summing the specific loud-

ness for all frequencies (eq. 31). Specific loudness can be calculated in 0.25-ERB,

0.1-ERB or other intervals to find a trade off between accuracy and computing

time (computational complexity grows with growing number of filters). This sum

has to be divided by a factor so that the overall loudness of a 1-kHz sinusoid at

40 dB monoaural is 0.75 sone for a monoaural model or 1 sone for a binaural

model [14].

N =

fs/2∫
0

N
′
/C3 (31)

where C3 was 2.373.
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Figure 39: Relation of excitation level and specific loudness, masker turned on

Figure 2.8.2 shows the predicted overall loudness of a 1kHz sinusoid at 1

kHz 40 dB SPL for a binaural model (= 40 phons). The loudness of 40 phons is

defined to be 1 sone. A rise by 10 phones doubles the percepted loudness, a fall

by 10 phones halves the percepted loudness. At low levels loudness falls quicker

to reach 0.003 sone at 2 phons (hearing threshold). At high levels loudness rises

faster to fit empirical data [1].
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Figure 40: Overall loudness of a 1kHz sinusoid at different levels
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2.9 Loudness of timevarying sounds in timevarying noise [2]

If a real musical signal or any other time-varying signal is analyzed, loudness is

calculated for every ms (see section 2.5). The so calculated loudness is called in-

stantenous loudness. However human hearing is based on perceptual time slices

that are longer than 1 ms. Therefor two new variables are defined: short-term

loudness and long-term loudness. Those can be calculated by integrating instan-

tenous loudness with different time constants. In speech recognition for example

short-term loudness can measure the loudness of an isolated syllable or a single

word and long-term loudness can measure the loudness of whole sentences or

text passages. In musical perception short-term loudness can be used for short

musical notes and long-term loudness can be used for measuring the loudness of

a musical phrases or whole pieces.

2.9.1 Calculation of short-term loudness

When Nst[n] > Nst[n−1], corresponding to an attack of loudness, the difference

equation of Short-term loudness Nst[n] is

Nst[n] = τas ∗N [n] + (1− τas) ∗Nst[n− 1] (32)

where N[n] is the instantenous loudness in time slice n and τas (time constant

of attack) is given by

τas = 1− e−Ti/Tas (33)

where Ti is the time interval between two successive values of the instantenous

loudness N (1 ms in this case) and Tas is a time constant chosen to be 0.0217 s.

When Nst[n] ≤ Nst[n− 1], corresponding to an release of loudness, a similar

difference equation is used, with a different time constant for release: Trs =

0.0495 s.

Nst[n] = τrs ∗N [n] + (1− τrs) ∗Nst[n− 1] (34)

τrs = 1− e−Ti/Trs (35)

Trs being greater than Tas means that percepted short-term loudness can

faster be built up than forgotten. In figure 41 one can see the analysis of a white

noise burst, switched on and off immediately.
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2.9.2 Calculation of long-term loudness

The equations for long-term loudness Nlt[n] are

Nlt[n] = τal ∗N [n] + (1− τal) ∗Nlt[n− 1] (36)

for times of attack (Nlt[n] > Nlt[n− 1]) and

Nlt[n] = τrl ∗N [n] + (1− τrl) ∗Nlt[n− 1] (37)

for times of release (Nlt[n] ≤ Nlt[n− 1])

with

τal = 1− e−Ti/Tal (38)

τrl = 1− e−Ti/Trl (39)

and

Tal = 0.0995s (40)

Trl = 1.9995s (41)

.

Figure 41 shows the analysis of a white noise burst, switched on and off

immediately.

2.9.3 Instantenous partial loudness IPL and short-term partial loud-

ness STPL

As suggested in [11] one can also apply temporal smearing to partial loudness

patterns to achieve a greater benefit for temporal timbre analysis. The original

partial loudness patterns, updated every ms, are then called IPL (instantenous

partial loudness) and the smeared patterns using short-term time constants are

called STPL (short-term partial loudness). One can also define LTPL (long-term

partial loudness), that is not defined in [11], using the corresponding long-term

time constants.
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Figure 41: Specific loudness, instant. loudness, short-term loudness, long-term

loudness

2.10 Binaural summation of loudness

In order to predict masking relations of panned maskers and signals it is neces-

sary to use a model of binaural loudness. According to recent empirical data [14],

summation for loudness across ears was found to be less-than-perfect. That

means if two identical sounds are presented first monaurally and than binau-

rally, percepted binaural loudness is less than twice the monoaural loudness. If

the left and the right signal are different in spectral appearance, the inhibition

of loudness summation is less, depending on specific loudness inhibition tuning

functions. This tuning of inhibition is quite broadband.

The tuning function W is given by

W (g) = e−B∗g
2

(42)

where B is a constant set to 0.08, g is a normalized frequency variable given

by
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Figure 42: Partial loudness patterns, original and smoothed, using a gaussian

spreading function

g =
‖E −∆E‖

E
(43)

and E equals the frequency unity number of ERBs given by equation 25.

The specific loudness patterns of both ears are convolved with the weighting

function W . Figure 42 shows the patterns for two sinusoids of different frequen-

cies. One can see that at lower frequency the tuning function is not as broad as

at high frequencies.

SL(g)smoothed = N
′

L(g) ∗W (g) (44)

SR(g)smoothed = N
′

R(g) ∗W (g) (45)

with specific loudness patterns of left and right ear N ′L(g) and N ′R(g).

The left ear signal causes an inhibition at the right ear and vice versa. There-

for the factors INHIBL(E) and INHIBR(E) are brought in and depend on

the quotient of the smoothed loudness patterns.

INHIBL(g) = 2/[1 + sech(SR(g)smoothed/SL(g)smoothed)
p
] (46)
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Figure 43: Binaural loudness: original specific loudness versus inhibited specific

loudness

INHIBg(E) = 2/[1 + sech(SL(g)smoothed/SR(g)smoothed)
p
] (47)

where sech is the hyperbolic secant.

sech(x) =
2

ex + e−x
(48)

The original loudness patterns are then multiplied with the inhibition factors.

N
′

Lbinaural(g) = N
′

L(g) ∗ INHIBL(g) (49)

N
′

Rbinaural(g) = N
′

R(g) ∗ INHIBR(g) (50)

Fig. 43 shows original and damped loudness patterns.

The total loudness is than

Nbinaural =

 fs/2∫
0

N
′

Rbinaural(g) +

fs/2∫
0

N
′

Lbinaural(g)

 /C4 (51)

where C4 is chosen so the overall loudness of two 1-kHz sinusoids at diotic

representation is 1 sone (2.2885, read out from implementation of the model).
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2.10.1 Binaural unmasking for two sound sources

To predict binaural unmasking the models of papers [1] and [14] will be merged.

2.10.1.1 Hypothesis

For each ear one monaural model is run. Each ear percepts a certain loud-

ness depending on the relation between the signal and the masker at each ear.

Hypothesis: A test tone is audible, if the binaural loudness is above hearing

threshold.

2.10.1.2 Stereo setup

To test the model for a binaural setup, the stereo setup described in section 2.2.1

was implemented in Matlab. The left and right ears’ signals are determined by

equations 10 to 13.

2.10.1.3 The panner

To achieve a constant overall loudness for all panning directions, a Cosine2 −
Panner has been chosen.

The angle of a sound event to arrive from lies between -30◦ and +30◦.

angle : −30◦ . . .+ 30◦ (52)

The pan-factor has to reach values between 0 and 1, therefor the following equa-

tion is introduced.

pan = angle/60 + 0.5 (53)

A pan-factor of 0 stands for hard left panning, 0.5 stands for center panning

and 1 stands for hard right panning.

Let us assume that the masker is in center panning.

M = MR = ML (54)

The left and right speaker signals SL and SR are derived from mono signal

S. When the cos and sin functions take radiants as their arguments, SL and SR

are given by the following equations.

SR = S ∗ cos((pan− 1) ∗ π
2

)2 (55)

SL = S ∗ sin((1− pan) ∗ π
2

)2 (56)

The gain curves of the Cosine2 − Panner are shown in figure 44.
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Figure 44: Gain factors of a Cosine2 − Panner

Figure 45 shows the perceived loudness of a 1 kHz and 40 dB SPL sinusoid

and a 26.4 dB SPL white noise, panned across the stereo triangle.

Let us now investigate the masking properties of a panned signal. The signal

and masker are broadband, like in the empirical reference [15]. Figure 46 shows

the relative level of a hard left panned masker, when the signal is at masking

threshold.

2.10.1.4 Empirical data

Figure 47 is taken from [15] and shows the relative masker level for a constant

speech intelligibility while varying the angle difference between masker and sig-

nal. Here the relative masker level differs from the predictions of the model. A

reason for this can be that binaural unmasking (known as cocktail party effect)

is not only caused by spectral masking. Beside that, the exact experimental

conditions of the used literature are unknown. A way to objectively prove or
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Figure 47: Empirical data for binaural unmasking taken from [15] (speech intel-

ligibility), ϕ = 0− 60 degrees corresponds to figure 46

disprove the hypothesis on binaural unmasking would be an objective exper-

iment with enough qualified and trained listeners and known test conditions.

This experiment is subject of further research.

2.11 Cross-analysis

When different instruments are mixed it is not targeting to decide one instrument

to be a masker and another instrument to be masked. Rather each instrument

works as a masker and is masked at the same time but in different spectral areas.

To analyze those relations each instrument is once assumed to be masked by the

sum of the rest of the instruments. In order to investigate these relations on

the basis of an simple experiment, the number of instruments is defined to be

two, so that once the excitation patterns for each instrument are known only

the specific loudness calculation (see figure 1) has to be done again.

If the number of instruments were n, the roex-filters’ input levels (see section

2.6) had to be calculated once for the sum of all instruments. Then 2∗n different

excitation patterns had to be calculated, namely the excitation patterns for each

instrument and for each supplementary sum of instruments (each instrument is

masked by the sum of all other instruments).

Figure 48 shows the predicted partial loudness of a complex tone (sum of

several sinusoids, see figure 48, first column) mixed with white noise. The lower
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Figure 48: Cross analysis: specific loudness for white noise and a complex tone

masking each other

subplots show the predictions for the same signals, but presented unmixed to

the listener. In the upper two subplots one can see the suppression at both

signals, interacting to each other. Dominant spectral parts of one signal mask

the corresponding spectral areas of the other signal.

Figure 49 shows one time slice (1 ms) of figure 48.

Figure 50 shows one single time slice of partial loudness for two mixed white

noises. Noteworthy is that areas of dominance are formed. At frequencies where

one signal is dominant the other signal is suppressed and vice versa. Signal 1

nearly looks like a x-axis mirroring of signal 2. Areas where both signals are

present are rare. Mixed signals seem to interact. Noise is very fluctuating in

time and so areas of dominance change permanently. When stable sounds are

mixed areas of dominance are stable.
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Figure 49: One time slice of figure 48

Figure 50: Cross analysis, one time slice: two white noises masking each other
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2.12 Restrictions of the model

The model does not take into account the effect of loudness adaption that lets

probands get used to high signal levels and make the percepted loudness smaller

than predicted for longer periods of experiments [22]. Another restriction of the

model is that the predicted masking threshold is not smeared by a temporal

window to predict forward- and backward masking correctly [23]. That means

short impulses have a greater effect on prior or subsequent events than predicted.

3 Experiment

3.1 Motivation

In order to find a measure for the quality of a mixed record the probability of

correct identification of musical instruments (IP) was chosen to be the deciding

factor. Some instruments of a mixdown can be discriminated very well, while

other instruments affiliate to one unit. For automatic mixdown algorithms and

for defining new user interfaces (see section 1) it is a goal to predict or control

those inter-instrumental relations.

The described hearing model of section 2 is used to predict the loudness of

masked (i.e. mixed) instruments.

3.1.0.5 Hypothesis

The identification probability of an instrument depends on how much of the

original unmixed instrument is audible. The auditory model predicting specific

loudness can also predict the IP of a mixed instrument.

3.1.1 Quotient of loudness for masked instruments

Let us define a new measure: the quotient of loudness for masked instruments

(LQ) in percent gives the ratio between the total short-term loudness of an

unmixed instrument and the total short-term loudness of the same instrument

being mixed into a masking environment.

0% ≤ LQ =
Nstmasked
Nstunmasked

∗ 100% ≤ 100% (57)

where the short-term loudness variables of the masked and unmasked instru-

ment Nstmasked and Nstunmasked are given by equation 32.

The aim of the following experiment is to find a relationship between LQ and

IP.
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Table 3: Experimental samplelist

Sample # Instrument Dynamics Pitch

1 violin piano e2

2 violin piano a3

3 viola piano e1

4 viola forte a1

5 cello forte a

6 cello piano A

7 contrabass forte A

8 contrabass piano contra A

9 flute forte e1

10 flute piano a2

11 clarinette forte a

12 clarinette forte e1

13 oboe forte a1

14 oboe forte e1

15 bassoon piano A

16 bassoon piano E

17 trumpet forte a2

18 trumpet piano e2

19 horn forte e1

20 horn forte a

21 trombone piano a

22 trombone forte A

23 tuba piano e

24 tuba forte contra A

3.2 Testsignals

Recordings of 12 different instruments were thankfully provided by the author

of [16]. The instruments are: violin, viola, cello, contrabass, flute, clarinet, oboe,

bassoon, trumpet, horn, trombone and tuba. For each instrument two different

samples were used. Therefor 24 different samples were tested. The samples are

approximately 2 s long, the onsets of the instruments are original as recorded

and the decays of the samples are faded out.
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Figure 51: Spectral envelope of the masker

3.2.1 The spectral shape of the masker

An lpc10 algorithm was used to estimate the spectral envelopes of the samples.

Matlab’s lpc() routine finds the coefficients of a 20th-order linear predictor (FIR

filter) that predicts the current value of the real-valued time series x based on

past samples. 20 coefficients were enough the form the spectral shape in an

appropriate way. White noise was filtered with the average spectral shape of

every sample. Advantage of this procedure is that the overall level of the masker

could be kept low while masking was effective. See [17] for details of LPC. Figure

51 shows the plot of the masker’s spectral envelope.

To create a masker that keeps LQ as constant as possible over time, colored

noise was multiplied with the envelope of the instrument’s signal.

The initial level of the noise determines LQ. The initial level was iteratively

modified to reach the desired LQ. To keep data of the extracted tracks, all

the analysis workspaces (i.e. excitations, spectral loudness, spectral centroid,

spectral width, spectral deviation, short- and long term loudness ...) have been

saved for later research on the empirical data. Figures 53, 54, 55 and 56 show

some analysis plots for sample 3 (see table 3).

10 linear prediction coding
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Figure 52: Masking the samples using different masker levels

The spectral centroid (figure 55) is given by

SC(t) =

fs/2∑
f=0

(
N ′sig(f) ∗ f

)
fs/2∑
f=0

N ′sig(f)

(58)

where N ′sig(f) is specific loudness, f is the frequency and fs is the sampling

frequency.

The spectral width (figure 56) is given by

SW (t) = fl − fu (59)

where fl is the lowest audible frequency of an instrumental sound and fu is

the highest audible frequency of an instrumental sound (audible means above

0.00537 [sone/bark]).
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Figure 53: Excitation for an unmasked sample of a viola, playing a piano e1
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Figure 54: Short term loudness for an unmasked sample of a viola, playing a

piano e1, different LQs
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Figure 56: Spectral width for an unmasked sample of a viola, playing a piano
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3.3 Experimental design

In order to test the relation between LQ and IP, the probands were tested on

trials of different levels of masking. Each trial contained one instrument (one

sample of table 3) and the masker (section 3.2.1) at some known level. The

probands were forced to identify what instrument is playing in each trial. The

answers were given in a check box form, shown in the appendix.

Due to some preexperiments the function of LQ and IP was expected to be

steeper for small LQs. Therefor the steps of LQ were chosen to be logarithmical.

To change the probands’ motivation for the better, some easier trials were added,

i.e. trials at LQ = 30 % and 70 %. The tested LQs were 1 %, 2 %, 5 %, 10 %, 20 %,

30 %, 50 %, 70 % and 100 % (unmasked instrument). Due to the preexperiments

the contrabass was also tested on LQ = 0.1 %, LQ = 0.2 % and LQ = 0.5 %,

because the threshold was expected to be in that area. The loudest testsignals

were skipped at the test to easy the probands’ ears. All probands were testet on

216 trials (24 samples * 9 levels of LQ + 3 contrabasstrials - 3 skipped). The

trials were arranged in random order.

3.4 Report

3.4.1 Qualifying

At the analysis of the data two errors attracted attention.

The first error was when some proband was not able to identify some instru-

ment at all, even for an unmasked scenario. That means that the answers of this

proband for this instrument would only cause a variance to lower identification

probabilities and bring no valid data.

The second error was when some proband was able to identify some in-

strument for all stages of masking, even when it was impossible in terms of

timbre recognition. Those probands have memorized the temporal envelope of

the masker for this instrument. Only timbre perception was subject of investi-

gation and so answers of those two error types have been disqualified for further

analysis.

For 10 samples more than 19 (50%) of the 38 probands are qualified. Those

samples are in particular more meaningful than the others. Their sample num-

bers are 6, 7, 8, 10, 11, 12, 13, 18, 22 and 24 and will receive detailed analysis

in section 3.4.3.1.

44 % of the probands’ samples were excluded because of error 1 (proband

was not able to identify some instrument at all) and 10 % were excluded because

of error 2 (proband memorized the temporal envelope of the masker). The ratio

between those two errors depends on the recorded raw material and is a trade off:

More characteristic (i.e. containing temporal envelope cues) and longer samples
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Table 4: Percentages of disqualification for samples, instruments and groups

Smpl. instr- group err- err- err- err- err- err-

# ument or 1 or 2 or 1 or 2 or 1 or 2

instr. instr. gr. gr.

1 violin str. 32% 42% 22% 61% 36% 21%

2 violin str. 13% 79%

3 viola str. 53% 11% 46% 17%

4 viola str. 39% 24%

5 cello str. 63% 0% 50% 1%

6 cello str. 37% 3%

7 c.bass str. 29% 5% 24% 4%

8 c.bass str. 18% 3%

9 flute w.wind 84% 0% 49% 4% 42% 7%

10 flute w.wind 13% 8%

11 cl.tte w.wind 29% 11% 25% 12%

12 cl.tte w.wind 21% 13%

13 oboe w.wind 39% 8% 46% 5%

14 oboe w.wind 53% 3%

15 basson w.wind 50% 3% 47% 5%

16 basson w.wind 45% 8%

17 trumpet br. 61% 3% 46% 1% 56% 3%

18 trumpet br. 32% 0%

19 horn br. 71% 5% 72% 4%

20 horn br. 74% 3%

21 t.bone br. 79% 3% 61% 4%

22 t.bone br. 42% 5%

23 tuba br. 82% 0% 45% 1%

24 tuba br. 8% 3%

of the instrument would minimize error 1 but maximize error 2. Smoothing out

temporal envelope variances would minimize error 2 but maximize error 1.

Error 1 was primarily a problem for the horn (72 % disqualified) and the

trombone (61 % disqualified). Error 2 was primarily a problem for the violin (61

% disqualified) and the viola (17 % disqualified).

Table 4 shows percentages of disqualification for samples, instruments and

groups.
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Figure 57: Anova boxplot for overall results, identification probability versus

quotient of loudness

3.4.2 Overall results

3.4.2.1 AnOVa [18] and [19]

The analysis of variance (AnOVa) was executed in Matlab. It was proved that

the identification probability IP [%] is related to the loudness quotient LQ [%].

To analyze the variance of the probands for each level of LQ, table 5 was fed

in matlab’s anova1(X). Figure 57 shows the boxplot for this analysis. The red

lines show estimators of the medians for each level of LQ. The boxes’ notches

show the confidence intervals in which the true medians lie with 95 % confidence.

One can conclude, when the notches of two differnt boxes do not overlap, that

the true medians are likely to be different.

The upper and lower ends of the boxes show the 25 % and 75 % - quartils

(i.e. 25 % or 75 % of the values lie above). The whiskers (black lines) show 1.5

times the quartils or the maximum range of the values if there are no outliers

(red crosses).

For LQ’s of 10 % and larger results are extremely significant, for smaller LQ’s

the empirical data does not lead to significant results.
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Table 5: Probability of correct instrument identification versus quotient of loud-

ness for each proband, outliers are bold

Proband LQ = 1 % 2 % 5 % 10 % 20 % 50 % 100 %

1 13.33 12.5 31.25 43.75 62.5 81.25 100.0

2 13.33 18.75 37.5 56.25 56.25 62.5 100.0

3 14.29 6.67 26.67 40.0 73.33 93.33 100.0

4 16.67 15.79 26.32 21.05 63.16 84.21 100.0

5 18.75 11.76 17.65 35.29 52.94 88.24 100.0

6 8.33 7.14 23.08 14.29 57.14 85.71 100.0

7 7.69 26.67 6.67 26.67 86.67 66.67 100.0

8 0 0 7.69 30.77 38.46 76.92 100.0

9 27.27 15.38 15.38 15.38 61.54 84.62 100.0

10 36.36 16.67 16.67 33.33 58.33 75.0 100.0

11 0 20.0 33.33 46.67 60.0 80.0 100.0

12 7.14 13.33 6.67 26.67 66.67 86.67 100.0

13 18.18 9.09 8.33 8.33 58.33 83.33 100.0

14 0 15.38 7.69 38.46 46.15 76.92 100.0

15 0 11.11 33.33 22.22 66.67 88.89 100.0

16 20.0 8.33 25.0 8.33 50.0 75.0 100.0

17 0 0 18.18 63.64 45.45 54.55 100.0

18 0 8.33 33.33 50.0 58.33 91.67 100.0

19 0 8.33 16.67 33.33 33.33 58.33 100.0

20 0 12.5 25.0 25.0 62.5 62.5 100.0

21 8.33 8.33 16.67 16.67 33.33 75.0 100.0

22 0 33.33 14.29 14.29 57.14 71.43 100.0

23 14.29 11.11 11.11 22.22 22.22 66.67 100.0

24 0 8.33 0 33.33 58.33 83.33 100.0

25 0 37.5 0 25.0 50.0 62.5 100.0

26 0 9.09 0 27.27 36.36 81.82 100.0

27 0 0 0 10.0 40.0 80.0 100.0

28 0 0 11.11 11.11 77.78 55.56 100.0

29 8.33 0 0 16.67 16.67 66.67 100.0

30 20.0 0 0 40.0 20.0 60.0 100.0

31 12.5 0 0 25.0 50.0 50.0 100.0

32 12.5 0 12.5 0 37.5 50.0 100.0

33 0 0 0 20.0 20.0 40.0 100.0

34 25.0 0 0 20.0 0 60.0 100.0

35 0 0 0 0 42.86 57.14 100.0

36 16.67 12.5 0 12.5 37.5 50.0 100.0

37 0 0 33.33 33.33 66.67 100.0 100.0

38 0 40.0 0 0 40.0 60.0 100.0
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Figure 58: F-Test for overall results, results are highly significant

3.4.2.2 Modeling IP(LQ)

Matlab’s function regress.m [18] was used to estimate a linear regression model

for the observed results. Figure 59 shows the linear regression model for data of

LQ ≥ 10%. The line is given by equation 60. It is not an exact line graphically

because the steps 10, 20, 50 and 100 are not exactly equidistant on a logarithmic

scale (log(10) = 1, log(20) = 1.3, log(50) = 1.7, log(100) = 2).

IP [%] = β0 + log(LQ(%)) ∗ β1 (60)

where β0 = −46.68 and β1 = 72.16.

Figures 60, 61 and 62 show the linear regression models errors (residuals) for

3 different LQs. The 3 distributions thrown together give mean = −0.7861%,

median = −0.4813% and σ = 16.0945%

Figure 63 shows the anova boxplot for comparing these 3 distributions. The

probability that all 3 distributions have the same median is 25.05 %. Therefor

the linear regression model is accepted to be valid.

For low LQs IP converges to guessing probability 1/n. The relationship

IP(LQ) altogether is described by equation 61.

IP (LQ) =

LQ ≥ 10

(
1/n−β0
β1

)
... β0 + log(LQ) ∗ β1 ∗ a

100%

LQ < 10

(
1/n−β0
β1

)
... 1

n ∗ 100%
(61)

where n is the number of possible instruments, a = IP (100%) depending on

the quality of the recordings and the training of the proband, β0 = −46.68 and

β1 = 72.16.
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Figure 59: Data of LQ ≥ 10% can be modeled by a linear regression model

(green line)
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Figure 60: Residuals of the linear regression model and the empirical data at LQ

= 10 %, mean = −0.0387%, median = −0.4813%, σ = 15.1691%
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Figure 61: Residuals of the linear regression model and the empirical data at LQ

= 20 %, mean = 1.8517%, median = 4.2662%, σ = 18.2054%
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Figure 62: Residuals of the linear regression model and the empirical data at LQ

= 50 %, mean = −4.1712%, median = −0.9194%, σ = 14.4941%
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Figure 63: Boxplot of residuals, F − Test : Prob > F : 25.05%
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Table 6: Estimating the IP for single proband on single sample, 1 ... correct

answer (correct instrument), 0 ... false answer

LQ answer averaged LQ averaged answer

1 % 0 1.5 % 0.5

2 % 1 3.5 % 0.5

5 % 0 7.5 % 0

10 % 0 15 % 0.5

20 % 1 25 % 1

30 % 1 40 % 0.5

50 % 0 60 % 0.5

70 % 1 85 % 1

100 % 1

3.4.3 Instrumental threshold determination

When analyzing single samples and single probands some treatment of probabil-

ity estimation is necessary. To find the threshold where the IP = 50% a moving

average procedure was used. Table 6 shows the answering and averaging of one

proband on one sample. The threshold is found at the lowest LQ for which the

averaged answer grows to 0.5 and not falls below that mark for any higher LQ

again. Here it was estimated to be at LQ = 15%.

To prove or unprove significant differences between the different samples

another anova was executed. Figure 64 shows its boxplot.

A complete pair comparison of f-tests was executed. Its result is a matrix of

significance (figure 65). Red cells show significant differences, green cells show

significant similarities. Conclusions on this results are drawn in section 4.
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Figure 64: Boxplot: Variances of probands’ identification thresholds for each

sample
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Figure 65: Matrix of significance: Variances of probands’ identification thresholds

for each sample. The thresholds of different samples differ significantly.
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Figure 66: Samples of ident instruments seem to have more similar thresholds

than samples of different instruments (F − Test : Prob > F : 23.35%)

Figure 66 shows the boxplot of the values of the significance matrix, com-

paring ident instrument samples and different instrument samples. Two samples

of ident instruments seem to have similar thresholds while samples of different

instruments tend to have different thresholds.

Figure 67 shows the boxplot of the values of the significance matrix, com-

paring ident group samples and different group samples. Two samples of ident

groups seem to have similar thresholds while samples of different groups tend to

have different thresholds.
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Figure 67: Samples of the same group seem to have more similar thresholds than

samples of different groups (F − Test : Prob > F : 8.16%)
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Figure 68: Identification threshold sample 6
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Figure 69: Partial loudness for sample 6

3.4.3.1 Detailed sample wise analysis

In this section the most meaningful samples (i.e. more than 50% of the probands

qualified) are analysed in detail by the use of specific loudness patterns.

Sample 6: cello piano A

23 out of 38 probands qualified for this sample.

48 % of those probands had their threshold at 50% < LQ < 100% (atonal

components between 3 kHz and 4.8 kHz). 17 % of those probands had their

threshold at 10% < LQ < 20% (fifth, 11th and 22nd partial). Nstthr = 2.60 (see

paragraph 3.4.3.2). error1 = 14 and error2 = 1.
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Figure 70: Identification threshold sample 7
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Figure 71: Partial loudness for sample 7

Sample 7: contrabass forte A

25 out of 38 probands qualified for this sample.

28 % of those probands had their threshold at 2% < LQ < 5% (funda-

mental). 24 % of those probands had their threshold at 5% < LQ < 10%

(atonal components at 170 Hz). 24 % of those probands had their threshold

at 20% < LQ < 50% (everything above the third partial). Nstthr = 0.47 (see

paragraph 3.4.3.2). error1 = 11 and error2 = 2.
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Figure 72: Identification threshold sample 8
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Figure 73: Partial loudness for sample 8

Sample 8: contrabass piano contra A

30 out of 38 probands qualified for this sample. 30 % of the probands had

their threshold at 5% < LQ < 10% (third partial and atonal components at 170

Hz). 27 % of the probands had their threshold at 20% < LQ < 50% (fourth

and fifth partial). 23 % of the probands had their threshold at 2% < LQ < 5%

(fundamental). Nstthr = 0.54 (see paragraph 3.4.3.2). error1 = 7 and error2 = 1.
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Figure 74: Identification threshold sample 10
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Figure 75: Partial loudness for sample 10

Sample 10: flute piano a2

30 out of 38 probands qualified for this sample. 50 % of the probands had

their threshold at 20% < LQ < 50% (second and fourth partial). 29 % of the

probands had their threshold at 10% < LQ < 20% (third partial). Nstthr = 1.14

(see paragraph 3.4.3.2). error1 = 5 and error2 = 3.
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Figure 76: Identification threshold sample 11
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Figure 77: Partial loudness for sample 11

Sample 11: clarinette forte a

23 out of 38 probands qualified for this sample. 52 % of the probands had

their threshold at 5% < LQ < 10% (just a reduction in overall loudness). 17 % of

the probands had their threshold at 2% < LQ < 5% (just a reduction in overall

loudness). Nstthr = 1.03 (see paragraph 3.4.3.2). error1 = 11 and error2 = 4.
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Figure 78: Identification threshold sample 12
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Figure 79: Partial loudness for sample 12

Sample 12: clarinette forte e1

25 out of 38 probands qualified for this sample. 64 % of the probands had their

threshold at 10% < LQ < 20% (fifth partial). 20 % of the probands had their

threshold at 20% < LQ < 50% (fourth, sixth, seventh, 11th and components

around 6 kHz). 16 % of the probands had their threshold at 5% < LQ < 10%

(just a reduction in overall loudness). Nstthr = 1.03 (see paragraph 3.4.3.2).

error1 = 8 and error2 = 5.
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Figure 80: Identification threshold sample 13
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Figure 81: Partial loudness for sample 13

Sample 13: oboe forte a1

20 out of 38 probands qualified for this sample. 55 % of the probands had

their threshold at 50% < LQ < 100% (fourth partial and components around

7.5 kHz). 35 % of the probands had their threshold at 20% < LQ < 50% (fifth

partial). Nstthr = 3.85 (see paragraph 3.4.3.2). error1 = 15 and error2 = 3.
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Figure 82: Identification threshold sample 18
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Figure 83: Partial loudness for sample 18

Sample 18: trumpet piano e2

26 out of 38 probands qualified for this sample. 69 % of the probands had

their threshold at 50% < LQ < 100% (fourth and fifth partial). 27 % of the

probands had their threshold at 20% < LQ < 50% (third partial). Nstthr = 2.72

(see paragraph 3.4.3.2). error1 = 12 and error2 = 0.

79



Figure 84: Identification threshold sample 22
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Figure 85: Partial loudness for sample 22

Sample 22: trombone forte A

20 out of 38 probands qualified for this sample. 80 % of the probands had

their threshold at 20% < LQ < 50% (components between 2 and 3 kHz). 20

% of the probands had their threshold at 10% < LQ < 20% (second, third,

eighth and ninth partial). Nstthr = 2.36 (see paragraph 3.4.3.2). error1 = 16

and error2 = 2.
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Figure 86: Identification threshold sample 24
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Figure 87: Partial loudness for sample 24

Sample 24: tuba forte contra A

34 out of 38 probands qualified for this sample. 62 % of the probands had

their threshold at 10% < LQ < 20% (10th partial). 26 % of the probands had

their threshold at 20% < LQ < 50% (second and 13th partial). Nstthr = 0.95

(see paragraph 3.4.3.2). error1 = 3 and error2 = 1.
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Figure 88: Overall short term loudness at identification threshold

3.4.3.2 Overall short term loudness at identification threshold

For each of the 24 samples the weighted short term loudness at the identification

threshold was calculated using equation 62. Figure 88 shows the corresponding

histogram.

Nstthr (s) =

1∑
LQ=0.01

Nst(s) ∗ a(LQ)/Q (62)

where s is the sample number, a is the number of probands who had their

threshold at this LQ and Q is the number of probands who qualified for this

sample s. It is noteworthy that the identification thresholds of different samples

measured in absolute loudness instead of percents of LQ do match up more. This

can be an indication to use absolute loudness in sone for further research also.

4 Conclusions and perspectives

Identification thresholds of some instruments (see for example figures 70 and

72) are subject to great personal variances. It seems that for those instruments

different probands use different approaches to identifiy an instrument. Other

instruments have less personal variance. Anyway it is not possible to find a

threshold of LQ that fits for all instruments. Even some similar instruments

(compare cello and contrabass) have markedly different thresholds. In general
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one can say that two ident instruments playing different samples tend to have

similar thresholds. Also samples of different instruments of an ident group do

tend to have more similar thresholds than samples of instruments of different

groups.

When looking at the general results (figures 57 and 88) one can see extremely

significant tendencies. As a rule of thumb it is defined that the LQ of a mixed

instrument should never fall below 0.1 or short-term loudness Nstthr should

never fall below 1 sone when the instrument should be perceptible separately.

For soloing instruments a greater value should be obtained in order to bring more

facets of timbre to the listener, and for background instruments (e.g. single voices

of a choir) smaller values can be accepted.

The influence of temporal structures, panning and spatiality (i.e. reverb and

echo) on masking needs more investigation. To define a precise instrumental

identification model more research is planned also.
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Voluntary details on the proband

Name or pseudonym: _________________________________

Gender:      Female                     Male

Age: ______

Profession: _________________________________

Known loss of hearing _________________________________
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Instructions on the experiment 

„Identification of masked instruments“

The experiment contains of 218 trials that are numbered from A03 to C20.

( Only for the alpha-group:
On Track A02 you will here unmasked samples of all instruments.)

The samples of the instruments will now be masked by noise of different levels. The order of 
playing the samples is random. Your task is to identify the right instrument for each trial and to 
check the corresponding box next to this instrument for each trial.
If you are not sure, try to guess the right group of instruments (strings, woodwind, brass). If you are 
absolutely unsure, simply guess.

Before every 10th track you will here a remark on the next tracknumber.

Overall duration: app. 40 minutes.

ANY QUESTIONS?

ANSWERS:

A03

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A04

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A05 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A06 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A07 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A08 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A09 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A10 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A11

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A12

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A13 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A14

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A15

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A16

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A17

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A18

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A19 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A20 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A21 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A22

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A23

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A24

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A25 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A26 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A27 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A28

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A29

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A30

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A31

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A32

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A33 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A34

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A35

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A36

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A37

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A38 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A39

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A40

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A41

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A42

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A43

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A44

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A45

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A46

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A47

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A48

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A49 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A50 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A51 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A52

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A53

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A54

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A55

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A56

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A57

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A58

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A59

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A60

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A61

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A62

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A63

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A64

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A65

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A66

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A67

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A68

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A69

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A70

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

13



A71

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A72

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A73 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A74

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A75

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A76

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A77

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A78

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A79 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A80 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A81 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A82

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A83

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A84

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A85

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A86

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A87

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A88

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A89

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A90

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A91

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A92

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A93

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A94

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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A95

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A96

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A97

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A98

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

A99

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B01

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B02

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B03

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B04

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B05 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B06 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B07 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B08 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B09 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B10 

Streicher: Violine Viola Cello Kontrabass  

Holzbläser: Flöte Klarinette Oboe Fagott 

Blechbläser: Trompete Horn Posaune Tuba

B11

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B12

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B13 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B14

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B15

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B16

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B17

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B18

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B19 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B20 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B21 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B22

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B23

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B24

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B25 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B26 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B27 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B28

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B29

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B30

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B31

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B32

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B33 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B34

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B35

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B36

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B37

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B38 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B39

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B40

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B41

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B42

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B43

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B44

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B45

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B46

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B47

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B48

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B49 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B50 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B51 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B52

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B53

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B54

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B55

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B56

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B57

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B58

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B59

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B60

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B61

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B62

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B63

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B64

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B65

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B66

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B67

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B68

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B69

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B70

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B71

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B72

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B73 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B74

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B75

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B76

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B77

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B78

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B79 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B80 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B81 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B82

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B83

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B84

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B85

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B86

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B87

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B88

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B89

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B90

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B91

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B92

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B93

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B94

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B95

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B96

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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B97

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B98

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

B99

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C01

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C02

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C03

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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C04

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C05 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C06 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C07 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C08 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C09 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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C10 

Streicher: Violine Viola Cello Kontrabass  

Holzbläser: Flöte Klarinette Oboe Fagott 

Blechbläser: Trompete Horn Posaune Tuba

C11

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C12

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C13 

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C14

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C15

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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C16

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C17

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C18

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C19

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba

C20

strings: violine viola cello contrabass  

woodwind: flute clarinette oboe bassoon

brass: trumpet horn trombone tuba
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